skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saz, Ahmet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents an analysis of semantic com- munication in the context of First-Order Logic (FOL)-based deduction. Specifically, the receiver holds a set of hypotheses about the State of the World (SotW), while the transmitter has incomplete evidence about the true SotW but lacks access to the ground truth. The transmitter aims to communicate limited information to help the receiver identify the hypothesis most consistent with true SotW. We formulate the objective as approximating the posterior distribution of the transmitter at the receiver. Using Stirling’s approximation, this reduces to a constrained, finite-horizon resource allocation problem. Applying the Karush-Kuhn-Tucker conditions yields a truncated water- filling solution. Despite the problem’s non-convexity, symmetry and permutation invariance ensure global optimality. Based on this, we design message selection strategies, both for single- and multi- round communication, and model the receiver’s inference as an m-ary Bayesian hypothesis testing problem. Under the Maximum A Posteriori (MAP) rule, our communication strategy achieves optimal performance within budget constraints. We further analyze convergence rates and validate the theoretical findings through experiments, demonstrating reduced error over random selection and prior methods. 
    more » « less
    Free, publicly-accessible full text available December 11, 2026